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Search

Setting:
• Agent
• Goal
• Problem Formulation

• A Set of Actions
• A Set of States

What we want to do?
Find a set of actions that achieve the goal 

when no single action will do 
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Setting:
• Agent
• Goal
• Problem Formulation

• A Complex Set of Actions
• Preconditions
• Effects

• A Complex Set of States
• Propositional Statements

What we want to do?
Take advantage of the structure of a problem 

to construct complex plans of actions

Planning



Search algorithms for Planning

• Search and Planning often addresses similar problems and there is 
no clear distinction between them.
• On one hand, planning deals with more complex problems w.r.t.

how actions are described, states, goals and when is difficult to 
provide a proper problem formulation.
• As an example, if the conditions can change planning methods are 

more suited to adapt the plan.
• On the other hand, search algorithms  are often used where a it is 

easier to describe the problem in a “mathematical” way.
• Overall, search and planning are deeply connected and overlapped, 

and planning often requires some form of search and problem 
solving algorithms.
• Path-planning is one of those problem.



Discrete Search Problems:  8-Puzzle 

• States: location of each digits in the eight tiles + blank one
• Initial State
• Goal State
• Actions: Left, Right, Up, Down
• Transition: given a state and an action, the resulting board



Discrete Search Problems:  8-Puzzle 

• States: location of each digits in the eight tiles + blank one
• Initial State
• Goal State
• Actions: Left, Right, Up, Down
• Transition: given a state and an action, the resulting board
• Goal Test: if the states are equal to the goal state
• Cost: each movement costs 1, the lowest number of tile move the 

lowest the cost



Expanding the current state by applying a legal action generating a 
new set of states, then…
…following up one option and putting aside others in case the first 
choice does not lead to a solution
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Search example



State-based problem formulation

• State space defined as a set of nodes, each node represents a state;
we assume a finite state space (and discrete)

• For each state, we have set of actions that can be undertaken by the agent from
that state

• Transition model: given a starting state and an action, indicates an arrival state;
we assume no uncertainties, i.e., deterministic transitions and full observability

• Action costs: any transition has a cost, which we assume to be greater than a
positive constant (reasonable assumption, useful for deriving some properties of
the algorithms we discuss)

• Initial state

• Goal State

Compact representation: state transition graph G=(V,E)
(We will use “state” and “node” as interchangeable terms)



Formally describing the desired solution

• In the problem formulation we need to formally describe the features of the 
solution we seek

• Two (three) classes of problems:

feasibility

is there a path to 
an exit?

Set of goal states, find any 
sequence of actions (path) 
from the initial state to a 
goal state

If at least a path to an 
exit exists, what is the 
one with the minimum 
number of turns?

optimality

Set of goal states, find the 
sequence of actions (path) from 
the initial state to a goal state that 
has the minimum cost

(approximation)



Problem example

Consider a agent moving on a graph-represented environment:

• States: nodes of the graph, they represent physical locations

• Edges: represent connections between nearby locations or, equivalently, 
movement actions

• Initial state: some starting location for the agent
Desired solution:

• Goal state(s): some location(s) to reach, …
Find a path to the initial location to a goal one



Example: going home from the CS department with METRO



Example: going home from the CS department with METRO



Start

Goal

Example: going home from the CS department with METRO

Goal



Problem example

Consider a mobile robot moving on a grid environment:

• States: cells in the map, they represent physical locations

• Edges: represent connections between nearby locations or, equivalently, 
movement actions

• Initial state: some starting location for the robot
Desired solution:

• Goal state(s): some location(s) to reach

• Find a path to the initial location to a goal one



Problem Example



Problem Example



A solution



And here? Changing a few tiles, different solution



One problem, many representations

The quality of the solution and the choice of algorithms rely on a proper  
problem formulation, with proper level of abstraction needed for the task

(not too many or too little details)



One problem, many representations

What type of 
representation?
• With which granularity?
• Shall I represent other 

nearby stations (Loreto, 
Udine?)

• Shall I represent also the 
bus stops?

• Trams?
• Main central stations?
• All Milan city map?
• Shall I represent all crossings 

and traffic lights?
• How about directions inside 

the campus?
• How about directions inside 

the building?



One problem, many representations

What type of 
representation?
• Grid map?
• How big the grid?
• Which distance?

• Euclidean
• Manhattan
• ?

• Shall I represent all crossings 
and traffic lights?

• How about directions inside 
the campus? (different grid 
size?)

• How about directions inside 
the building? (smaller?)

;



Problem specification

• How to specify a planning problem?

• First approach: provide the full state transition graph G (as in the previous 
example)

• Most of the times this is not an affordable option due to the combinatorial 
nature of the state space:

• Chess board: approx. 1047 states
• We can specify the initial state and the transition 

function in some compact form (e.g., set of rules to 
generate next states)

• The planning problem “unfolds” as search progresses

• We need an efficient procedure for goal checking



General features of search algorithms

A search algorithm explores the state-transition graph G until it discovers the 
desired solution

• feasibility: when a goal node is visited the path that led to that node is 
returned

• optimality: when a goal node is visited, if any other
possible path to that node has higher cost the path 
that led to that node is returned

Given a state and the path followed to get there, the next node 
to explore is chosen using a state strategy

It does not suffice to visit a goal node, the algorithm has to
reconstruct the path it followed to get there: it must keep 
a trace of its search

Such a trace can be mapped to a subgraph of G, it is called search graph



how to evaluate a (search) algorithm?

• We can evaluate a search algorithm along different dimensions

• Completeness:
If there is a solution, is the algorithm guaranteed to find it? 
• Systematic: 

If the state space is finite, will the algorithm visit all reachable state 
(so finding a solution if a solution exists?)

• Optimality: does the strategy find an optimal solution?
• Space complexity: 

How much memory is needed to find a solution?
• Time complexity?

How long does it takes?

(The above criteria can actually be used to evaluate a broader class of algorithms)



Soundness

• Optimality: does the returned solution lead to a goal with minimum cost?

Maybe we are not always looking for the optimal solution… 

…for some problems, we may look for other features

Soundness: If the algorithm returns a solution, is it compliant with the desired 
features specified in the problem formulation?

• Example:
• Feasibility: does the returned solution lead to a goal?
• Optimality: does the returned solution lead to a goal with minimum cost?

(We may need other features from the algorithm e.g., approximation)



Completeness and the systematic property

• If a solution exists, does the algorithm find it? 

• Typically shown by proving that the search will/will not visit all states if given 
enough time à systematic 

• If the state-space is finite, ensuring that no redundant exploration occurs is 
sufficient to make the search systematic.

• If the state space is infinite, we can ask if the search is systematic:
• If there is a solution, the search algorithm must report it in finite time
• if the answer is no solution, it’s ok if it does not terminate but …
• … all reachable states must be visited in the limit: as time goes to infinity, all 

states are visited – all reachable vertex is explored - (this definition is sound 
under the assumption of countable state space)



Visual example

IN

OUT

is there a 
route from 
IN to OUT?



Visual example

IN

OUTComplete / Systematic

• Searching along multiple trajectories (either concurrently or not), eventually covers all 
the reachable space



Visual example

IN

OUT

Not complete / Not systematic

• Searching along a single trajectory, eventually gets stuck in a dead end (or find a solution 
if we are lucky)



Space and time complexity

• Asymptotic trend:
• We measure complexity with a function of the input size
• For analysis purposes, the “Big O” notation is convenient:

• Space complexity: how does the amount of memory required by
the search algorithm grows as a function of the problem’s
dimension (worst case)?

• Time complexity: how does the time required by the search
algorithm grows as a function of the problem’s dimension (worst
case)?

• An algorithm that is              is better than one that is      
• If          is an exponential, the algorithm is not efficient



Running example

• To present the various search algorithms, we will use this problem instance as our 
running example
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State-transition graph:

Initial state: A

Desired solution: any path to goal state E

• It might be useful to think it as a map, but keep in mind that this interpretation does not 
hold for every instance



Search algorithm definition

• The different search algorithms are substantially characterized by the answer they 
provide to the following question:

• The answer is encoded in a set of rules that drives the search and define its type, let’s 
start with the simplest one

A F D Given what I searched so far, 
where to search next? 
(search strategy)



Depth-First Search (DFS)
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Depth-First Search (DFS)
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Depth-First Search (DFS)
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Depth-First Search (DFS)
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Depth-First Search (DFS)

A

B F

C D

A

C

G

D

F

B

E

7

5

6

3

3
4

5

3



Depth-First Search (DFS)
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• A Depth-First Search (DFS) chooses the deepest node in the search tree
(How to break ties? For now lexicographic order)

• A dead end stopped the search, DFS seems not complete. Can we fix this?

• Let’s endow our DFS with backtracking: a way to reconsider previously
evaluated decisions



Depth-First Search (DFS)
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• A Depth-First Search (DFS) chooses the deepest node in the search tree
(How to break ties? For now lexicographic order)

• A dead end stopped the search, DFS seems not complete. Can we fix this?

• Let’s endow our DFS with backtracking: a way to reconsider previously
evaluated decisions
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Depth-First Search (DFS)
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• A Depth-First Search (DFS) chooses the deepest node in the search tree
(How to break ties? For now lexicographic order)

• A dead end stopped the search, DFS seems not complete. Can we fix this?

• Let’s endow our DFS with backtracking: a way to reconsider previously
evaluated decisions

A

B F



Depth-First Search (DFS)
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• A Depth-First Search (DFS) chooses the deepest node in the search tree
(How to break ties? For now lexicographic order)

• A dead end stopped the search, DFS seems not complete. Can we fix this?

• Let’s endow our DFS with backtracking: a way to reconsider previously
evaluated decisions
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Depth-First Search (DFS)
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• A Depth-First Search (DFS) chooses the deepest node in the search tree
(How to break ties? For now lexicographic order)

• A dead end stopped the search, DFS seems not complete. Can we fix this?

• Let’s endow our DFS with backtracking: a way to reconsider previously
evaluated decisions
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Depth-First Search (DFS)
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• A Depth-First Search (DFS) chooses the deepest node in the search tree
(How to break ties? For now lexicographic order)

• A dead end stopped the search, DFS seems not complete. Can we fix this?

• Let’s endow our DFS with backtracking: a way to reconsider previously
evaluated decisions
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Depth-First Search (DFS)
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• A Depth-First Search (DFS) chooses the deepest node in the search tree
(How to break ties? For now lexicographic order)

• A dead end stopped the search, DFS seems not complete. Can we fix this?

• Let’s endow our DFS with backtracking: a way to reconsider previously
evaluated decisions
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Depth-First Search (DFS)
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• A Depth-First Search (DFS) chooses the deepest node in the search tree
(How to break ties? For now lexicographic order)

• A dead end stopped the search, DFS seems not complete. Can we fix this?

• Let’s endow our DFS with backtracking: a way to reconsider previously
evaluated decisions
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Solution: (A->B->D->F->G->E)



Depth-First Search (DFS) and Loops
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• DFS with loops – non systematic / complete
• We are avoiding loops on the same branch

(loops are redundant paths)



Depth-First Search (DFS)

• DFS with loops removal and BT is sound and complete (for finite spaces)

• Call the maximum branching factor, i.e., the maximum number of actions
available in a state

• Call the maximum depth of a solution, i.e., the maximum number of actions
in a path

• Space complexity: 

• Time complexity: 



Breadth-First Search (BFS)
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Breadth-First Search (BFS)
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Breadth-First Search (BFS)
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Breadth-First Search (BFS)
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Breadth-First Search (BFS)
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Breadth-First Search (BFS)
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Breadth-First Search (BFS)
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Breadth-First Search (BFS)
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Breadth-First Search (BFS)
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Solution: (A->F->G->E)



Breadth-First Search (BFS)
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• A Breadth-First Search (BFS) chooses the shallowest node, thus exploring in a level 
by level fashion

• It has a more conservative behavior and does not need to reconsider decisions

• Call    the depth of the shallowest solution (in general            )

Solution: (A->F->G->E)

• Space complexity: 

• Time complexity: 



Redundant paths

• Both DFS and BFS visited some nodes multiple times (avoiding loops prevents 
this to happen only within the same branch)

• In general, this does not seem very efficient. Why?
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• Idea: discard a newly generated node if already present somewhere on the 
tree, we can do this with an enqueued list



DFS with Enqueued List
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DFS with Enqueued List
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DFS with Enqueued List
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DFS with Enqueued List
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DFS with Enqueued List
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DFS with Enqueued List
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• Node F ha already been “enqueued”
on the tree, by discarding it we
prune a branch of the tree



DFS with Enqueued List
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on the tree, by discarding it we
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DFS with Enqueued List
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• Node F ha already been “enqueued”
on the tree, by discarding it we
prune a branch of the tree



BFS with Enqueued List
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BFS with Enqueued List
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BFS with Enqueued List
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BFS with Enqueued List

A

B F

C D

A

C

G

D

F

B

E

7

5

6

3

3
4

5

3



BFS with Enqueued List
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BFS with Enqueued List
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BFS with Enqueued List
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BFS with Enqueued List
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Implementation
• The implementation of the previous algorithms is based on two data structures:

• A queue F (Frontier), elements ordered by priority, a selection consumes the 
element with highest priority

• A list EL (Enqueued List, nodes that have already been put on the tree)

• The frontier F contains the terminal nodes of all the paths currently under exploration on 
the tree
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• The frontier separates the explored part of the state space from the unexplored part
• In order to reach a state that we still did not searched, we need to pass from the frontier 

(separation property)
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Implementation

If F is implemented as a
LIFO (Last In First Out)
queue we have a DFS

If F is implemented a
FIFO (First In First Out)
queue we have a BFS

The goal check is 
performed as 

soon as a node is 
generated



Depth-limited Search
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• Variant of DFS, trying to solve issues in “deep” or infinite state space
• Idea: limit the max number of depth search to a level 𝑙
• Nodes at level 𝑙 are treated as if they have no successor
• Call    the depth of the shallowest solution, how do we set 𝑙?
• What if we choose 𝑙 > 𝑑? Non-optimal

• Time complexity: 𝑂(𝑏!)

• Space complexity: 𝑂(𝑏𝑙)



Iterative-deepening DFS
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• Variant of DFS and similar to depth-limited search
• Idea: limit the max number of depth search to a level 𝑙, increasing 𝑙
• Nodes at level 𝑙 are treated as if they have no successor
• We start with 𝑙 = 0, if no solution is found increase 𝑙 = 𝑙 + 1 until a solution is found
• Complete in finite spaces

• Space complexity: 𝑂(𝑏")

• Time complexity: 𝑂(𝑏𝑞)



Search for the optimal solution
• Now we assume to be interested in the solution with minimum cost (not just any 

path to the goal, but the cheapest possible)

• To devise an optimal search algorithm we take the moves from BFS. Why it seems 
reasonable to do that?

• We generalize the idea of BFS to that of Uniform Cost Search (UCS)

• BFS proceeds by depth levels, UCS does that by cost levels (as a consequence, if costs 
are all equal to some constant BFS and UCS coincide)

• Cost accumulated on a path from the start node to v:              (we should include a 
dependency on the path, but it will always be clear from the context)

• For now let’s remove the enqueued list and the goal checking as we know it



Uniform Cost Search (UCS)

A

C

G

D

F

B

E

7

5

6

3

3
4

5

3



Uniform Cost Search (UCS)

A

C

G

D

F

B

E

7

5

6

3

3
4

5

3

A0



Uniform Cost Search (UCS)
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Uniform Cost Search (UCS)
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Uniform Cost Search (UCS)
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Uniform Cost Search (UCS)
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Uniform Cost Search (UCS)
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Uniform Cost Search (UCS)
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Uniform Cost Search (UCS)
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Uniform Cost Search (UCS)

• Have we found the optimal path to the goal? In this problem instance, we can answer 
yes by inspecting the graph

• How about larger instances? Can we prove optimality?

• Actually, we can prove a stronger claim: every time UCS selects for the first time a node 
for expansion, the associated path leading to that node has minimum cost
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Optimality of UCS

X would have been chosen before V, then 1 is false

A

V X

Frontier

Hypotheses:
1. UCS selects from the frontier a node V that has 

been generated through a path p
2. p is not the optimal path to V

Given 2 and the frontier separation property, we
know that there must exist a node X on the frontier,
generated through a path p’1 that is on the optimal
path p’≠p to V; let assume p’ = p’1 + p’2

since, from Hp, p’ is optimal

since costs are positive



Optimality of UCS

If when we select for the first time we discover the optimal path, there is no reason to 
select the same node a second time: extended list

Every time we select a node for extension:
• If the node is already in the extended list we discard it
• Otherwise we extend it and we put it the extended list

• (Warning: we are not using an enqueued list, it would actually make the search not 
sound!)



UCS with extended list
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UCS with extended list

• Thanks to the extended list we can prune two branches
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Implementation

F is implemented as a
cost-sorted (increasing)
list queue

The goal check is done when
the node is selected (not
when is generated)

• Question: is this search informed?



Summing up

Criterion BFS UCS DFS Limited DFS Iterative DFS

Complete? Yes 
(if 𝑏 finite)

Yes 
(if 𝑏 finite 
and cost 
positive)

No 
(only for 
finite spaces)

No 
( 𝑙 > 𝑞)

Yes 
(if 𝑏 finite)

Time com. 𝑂(𝑏!) 𝑂(𝑏"# $∗/& ) 𝑂(𝑏') 𝑂(𝑏() 𝑂(𝑏!)

Space com. 𝑂(𝑏!) 𝑂(𝑏"# $∗/& ) 𝑂(𝑏𝑚) 𝑂(𝑏𝑙) 𝑂(𝑏𝑞)

Optimal? Yes (identical 
costs)

Yes No No Yes (identical 
costs)

𝑏 branching factor, 
𝑞 depth of the shallowest solution, 
𝑚 maximum depth of search tree, 
𝑙 depth limit



Informed vs non-informed search

• Besides its own rules, any search algorithm decides where to search next by leveraging 
some knowledge

• Non-informed search uses only knowledge specified at problem-definition time (e.g., 
goal and start nodes, edge costs), just like we saw in the previous examples

• An informed search might go beyond such knowledge

• Idea: using an estimate of how far a given node is from the goal

• Such an estimate is often called a heuristic

Estimate of the cost of the optimal path from node v to the goal:



Informed vs non-informed search

• We can enrich DFS and BFS to obtain their an informed versions

• Both search methods break ties in lexicographical order, but it seems reasonable to do 
that in favor of nodes that are believed to be closer to the goal

• Hill climbing
• A DFS where ties are broken in favor the node with smallest h

• Beam (of width w)
• A BFS where at each level we keep the first w nodes in increasing order of h



A*
• The informed version of UCS is called A*

• Very popular search algorithm

• It was born in the early days of mobile robotics when, in 1968, Nilsson, Hart, and
Raphael had to face a practical problem with Shakey (one of the ancestors of today’s
mobile robots)

SRI RoboticsWikipedia



A*
• The idea behind A* is simple: perform a UCS, but instead of considering accumulated 

costs consider the following:

Cost of the minimum path from n to the goal

• To guarantee that the search is sound and complete we need to require that the 
heuristic is admissible: it is an optimistic estimate or, more formally:

Cost accumulated 
on the path to n 
(“cost-to-come”)

Heuristic
(“cost-to-go”) 

• If the heuristic is not admissible we might discard a path that could actually turn out 
to be better that the best candidate found so far
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• Problem: if we work with an extended list, admissibility is not enough!

• Let’s consider this “pathological" instance:
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• We need to require a stronger property: consistency

• For any connected nodes u and v:

A*

v

u

goal

• It’s a sort of triangle inequality, let’s reconsider our pathological instance:
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Optimality of A*

A

G X

Frontier

A* selected G: 

f is non-decreasing:

consistency
f is non-decreasing along any search trajectory

Hypotheses:
1. A* selects from the frontier a node G that

has been generated through a path p
2. p is not the optimal path to G

Given 2 and the frontier separation property, we
know that there must exist a node X on the
frontier that is on a better path to G

When A* selects a node for expansion, it 
discovers the optimal path to that node



Building good heuristics

• The “larger heuristics are better” principle is not a methodology to define a good
heuristic

• Such a task, seems to be rather complex: heuristics deeply leverage the inner structure
of a problem and have to satisfy a number of constraints (admissibility, consistency,
efficiency) whose guarantee is not straightforward

• When we adopted the straight-line distance in our route finding examples, we were sure
it was a good heuristic

• Would it be possible to generalize what we did with the straight-line distance to define a
method to compute heuristics for a problem?

• Good news: the answer is yes



Evaluating heuristics

• How to evaluate if an heuristic is good?

Trivial
heuristic

Trivial
problem

We’d like to push 
this point to the 

right. Why?

• A* will expand all nodes v such that:

• If, for any node v 

then A* with h2 will not expand more nodes than A* with h1, in general h2 is better 
(provided that is consistent and can be computed by an efficient algorithm)

• If we have two consistent heuristics h1 and h2 we can define



Relaxed problems

• Given a problem P, a relaxation of P is an easier version of P where some constraints 
have been dropped

• In our route finding problems removing the constraint that movements should be over
roads (links) means that some costs pass from an infinite value to a finite one (the
straight-line distance)

Costs in the 
relaxation

Costs in the 
original problem

Original 
problem

Relaxed 
problem

Removing constraints
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Relaxed problems
• Idea:

Apply A* to every 
node and get

Define a 
relaxation of  P:

Set                 in the 
original problem and run A*

Path costs are optimal

From our idea

From the definition of relaxation

h is consistent

• We can easily define a problem relaxation, it’s just matter of removing 
constraints/rewriting costs

• But what happens to soundness and completeness of A*?
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