Sistemi Intelligenti Avanzati Corso di Laurea in Informatica, A.A. 2021-2022 Università degli Studi di Milano

Search algorithms for planning

Matteo Luperto

Dipartimento di Informatica matteo.luperto@unimi.it

Search

Setting:

- Agent
- Goal
- Problem Formulation
 - A Set of Actions
 - A Set of States

What we want to do?

Find a set of actions that achieve the goal when no single action will do

Take advantage of the structure of a problem to construct complex plans of actions

Search algorithms for Planning

- Search and Planning often addresses similar problems and there is no clear distinction between them.
- On one hand, planning deals with more complex problems w.r.t. how actions are described, states, goals and when is difficult to provide a proper problem formulation.
- As an example, if the conditions can change planning methods are more suited to adapt the plan.
- On the other hand, search algorithms are often used where a it is easier to describe the problem in a "mathematical" way.
- Overall, search and planning are deeply connected and overlapped, and planning often requires some form of search and problem solving algorithms.
- Path-planning is one of those problem.

Discrete Search Problems: 8-Puzzle

7	2	4
5		6
8	3	1
	Start State	

- States: location of each digits in the eight tiles + blank one
- Initial State
- Goal State
- Actions: Left, Right, Up, Down
- Transition: given a state and an action, the resulting board

Discrete Search Problems: 8-Puzzle

7	2	4
5		6
8	3	1
Start State		

- States: location of each digits in the eight tiles + blank one
- Initial State
- Goal State
- Actions: Left, Right, Up, Down
- Transition: given a state and an action, the resulting board
- Goal Test: if the states are equal to the goal state
- Cost: each movement costs 1, the lowest number of tile move the lowest the cost

Expanding the current state by applying a legal action generating a new set of states, then...

...following up one option and putting aside others in case the first choice does not lead to a solution

State-based problem formulation

- State space defined as a set of nodes, each node represents a state;
 we assume a finite state space (and discrete)
- For each state, we have set of actions that can be undertaken by the agent from that state
- Transition model: given a starting state and an action, indicates an arrival state;
 we assume no uncertainties, i.e., deterministic transitions and full observability
- Action costs: any transition has a cost, which we assume to be greater than a
 positive constant (reasonable assumption, useful for deriving some properties of
 the algorithms we discuss)
- Initial state
- Goal State

Compact representation: state transition graph G=(V,E) (We will use "state" and "node" as interchangeable terms)

Formally describing the desired solution

- In the problem formulation we need to formally describe the features of the solution we seek
- Two (three) classes of problems:

is there a path to an exit?

Set of goal states, find any sequence of actions (path) from the initial state to a goal state

If at least a path to an exit exists, what is the one with the minimum number of turns?

Set of goal states, find the sequence of actions (path) from the initial state to a goal state that has the minimum cost

Problem example

Consider a agent moving on a graph-represented environment:

- States: nodes of the graph, they represent physical locations
- **Edges**: represent connections between nearby locations or, equivalently, movement actions
- Initial state: some starting location for the agent

Desired solution:

• **Goal state(s)**: some location(s) to reach, ... Find a path to the initial location to a goal one

Example: going home from the CS department with METRO

Example: going home from the CS department with METRO

Example: going home from the CS department with METRO

Problem example

Consider a mobile robot moving on a grid environment:

- **States**: cells in the map, they represent physical locations
- **Edges**: represent connections between nearby locations or, equivalently, movement actions
- Initial state: some starting location for the robot

Desired solution:

- **Goal state(s)**: some location(s) to reach
- Find a path to the initial location to a goal one

Problem Example

Problem Example <

A solution

And here? Changing a few tiles, different solution

One problem, many representations

PIPSAR Am

One problem, many representations

What type of representation?

- With which granularity?
- Shall I represent other nearby stations (Loreto, Udine?)
- Shall I represent also the bus stops?
- Trams?
- Main central stations?
- All Milan city map?
- Shall I represent all crossings and traffic lights?
- How about directions inside the campus?
- How about directions inside the building?

One problem, many representations

What type of representation?

- Grid map?
- How big the grid?
- Which distance?
 - Euclidean
 - Manhattan
 - ?
- Shall I represent all crossings and traffic lights?
- How about directions inside the campus? (different grid size?)
- How about directions inside the building? (smaller?)

,

Problem specification

- How to specify a planning problem?
- First approach: provide the full state transition graph G (as in the previous example)
- Most of the times this is not an affordable option due to the combinatorial nature of the state space:

- Chess board: approx. 10⁴⁷ states
- We can specify the initial state and the transition function in some compact form (e.g., set of rules to generate next states)
- The planning problem "unfolds" as search progresses
- We need an efficient procedure for goal checking

General features of search algorithms

A search algorithm explores the state-transition graph G until it discovers the desired solution

• feasibility: when a goal node is visited the path that led to that node is returned

 optimality: when a goal node is visited, if any other possible path to that node has higher cost the path that led to that node is returned

Given a state and the path followed to get there, the next node to explore is chosen using a *state strategy*

It does not suffice to visit a goal node, the algorithm has to reconstruct the path it followed to get there: it must keep a trace of its search

"HIS PATH-PLANNING MAY BE

Such a trace can be mapped to a subgraph of G, it is called *search graph*

how to evaluate a (search) algorithm?

- We can evaluate a search algorithm along different dimensions
 - Completeness:
 If there is a solution, is the algorithm guaranteed to find it?
 - Systematic:
 If the state space is finite, will the algorithm visit all reachable state (so finding a solution if a solution exists?)
 - Optimality: does the strategy find an optimal solution?
 - Space complexity:
 How much memory is needed to find a solution?
 - Time complexity? How long does it takes?

(The above criteria can actually be used to evaluate a broader class of algorithms)

Soundness

• Optimality: does the returned solution lead to a goal with minimum cost?

Maybe we are not always looking for the optimal solution...

...for some problems, we may look for other features

Soundness: If the algorithm returns a solution, is it compliant with the desired features specified in the problem formulation?

- Example:
 - Feasibility: does the returned solution lead to a goal?
 - Optimality: does the returned solution lead to a goal with minimum cost?

(We may need other features from the algorithm e.g., approximation)

Completeness and the systematic property

- If a solution exists, does the algorithm find it?
- Typically shown by proving that the search will/will not visit all states if given enough time → systematic
- If the state-space is finite, ensuring that no redundant exploration occurs is sufficient to make the search systematic.
- If the state space is infinite, we can ask if the search is systematic:
 - If there is a solution, the search algorithm must report it in finite time
 - if the answer is no solution, it's ok if it does not terminate but ...
 - ... all reachable states must be visited in the limit: as time goes to infinity, all states are visited – all reachable vertex is explored - (this definition is sound under the assumption of countable state space)

Visual example

Visual example

 Searching along multiple trajectories (either concurrently or not), eventually covers all the reachable space

Visual example

Searching along a single trajectory, eventually gets stuck in a dead end (or find a solution
if we are lucky)

Space and time complexity

 Space complexity: how does the amount of memory required by the search algorithm grows as a function of the problem's dimension (worst case)?

 Time complexity: how does the time required by the search algorithm grows as a function of the problem's dimension (worst case)?

- Asymptotic trend:
 - We measure complexity with a function f(n) of the input size
 - For analysis purposes, the "Big O" notation is convenient:

A function f(n) is O(g(n)) if $\exists k > 0, n_0$ such that $f(n) \leq kg(n)$ for $n > n_0$

- An algorithm that is ${\cal O}(n^2)$ is better than one that is ${\cal O}(n^5)$
- If g(n) is an exponential, the algorithm is not efficient

Running example

 To present the various search algorithms, we will use this problem instance as our running example

• It might be useful to think it as a map, but keep in mind that this interpretation does not hold for every instance

Search algorithm definition

 The different search algorithms are substantially characterized by the answer they provide to the following question:

• The answer is encoded in a set of rules that drives the search and define its type, let's start with the simplest one

- A Depth-First Search (DFS) chooses the deepest node in the search tree (How to break ties? For now lexicographic order)
- A dead end stopped the search, DFS seems not complete. Can we fix this?
- Let's endow our DFS with backtracking: a way to reconsider previously evaluated decisions

Α

- A Depth-First Search (DFS) chooses the deepest node in the search tree (How to break ties? For now lexicographic order)
- A dead end stopped the search, DFS seems not complete. Can we fix this?
- Let's endow our DFS with backtracking: a way to reconsider previously evaluated decisions

A B F

- A Depth-First Search (DFS) chooses the deepest node in the search tree (How to break ties? For now lexicographic order)
- A dead end stopped the search, DFS seems not complete. Can we fix this?
- Let's endow our DFS with backtracking: a way to reconsider previously evaluated decisions

- A Depth-First Search (DFS) chooses the deepest node in the search tree (How to break ties? For now lexicographic order)
- A dead end stopped the search, DFS seems not complete. Can we fix this?
- Let's endow our DFS with backtracking: a way to reconsider previously evaluated decisions

- A Depth-First Search (DFS) chooses the deepest node in the search tree (How to break ties? For now lexicographic order)
- A dead end stopped the search, DFS seems not complete. Can we fix this?
- Let's endow our DFS with backtracking: a way to reconsider previously evaluated decisions

- A Depth-First Search (DFS) chooses the deepest node in the search tree (How to break ties? For now lexicographic order)
- A dead end stopped the search, DFS seems not complete. Can we fix this?
- Let's endow our DFS with backtracking: a way to reconsider previously evaluated decisions

- A dead end stopped the search, DFS seems not complete. Can we fix this?
- Let's endow our DFS with backtracking: a way to reconsider previously evaluated decisions

 Let's endow our DFS with backtracking: a way to reconsider previously evaluated decisions

Solution: (A->B->D->F->G->E)

Depth-First Search (DFS) and Loops

- DFS with loops non systematic / complete
- We are avoiding loops on the same branch (loops are redundant paths)

- DFS with loops removal and BT is sound and complete (for finite spaces)
- Call b the maximum branching factor, i.e., the maximum number of actions available in a state
- Call d the maximum depth of a solution, i.e., the maximum number of actions in a path
- Space complexity: O(d)
- Time complexity: $1 + b + b^2 + \ldots + b^d = O(b^d)$

4

- A Breadth-First Search (BFS) chooses the shallowest node, thus exploring in a level by level fashion
- It has a more conservative behavior and does not need to reconsider decisions
- Call q the depth of the shallowest solution (in general $q \leq d$)
- Space complexity: $O(b^q)$
- Time complexity: $O(b^q)$

Redundant paths

 Both DFS and BFS visited some nodes multiple times (avoiding loops prevents this to happen only within the same branch)

In general, this does not seem very efficient. Why?

 Idea: discard a newly generated node if already present somewhere on the tree, we can do this with an enqueued list

Α

 Node F ha already been "enqueued" on the tree, by discarding it we prune a branch of the tree

 Node F ha already been "enqueued" on the tree, by discarding it we prune a branch of the tree

 Node F ha already been "enqueued" on the tree, by discarding it we prune a branch of the tree

BFS with Enqueued List

BFS with Enqueued List

Implementation

- The implementation of the previous algorithms is based on two data structures:
 - A queue F (Frontier), elements ordered by priority, a selection consumes the element with highest priority
 - A list EL (Enqueued List, nodes that have already been put on the tree)
- The frontier F contains the terminal nodes of all the paths currently under exploration on the tree

- The frontier separates the explored part of the state space from the unexplored part
- In order to reach a state that we still did not searched, we need to pass from the frontier (separation property)

Implementation

Depth-limited Search

- Variant of DFS, trying to solve issues in "deep" or infinite state space
- Idea: limit the max number of depth search to a level l
- Nodes at level l are treated as if they have no successor
- Call q the depth of the shallowest solution, how do we set l?
- What if we choose l > d? Non-optimal
- Time complexity: $O(b^l)$
- Space complexity: O(bl)

Iterative-deepening DFS

- Variant of DFS and similar to depth-limited search
- Idea: limit the max number of depth search to a level l, increasing l
- Nodes at level l are treated as if they have no successor
- We start with l=0, if no solution is found increase l=l+1 until a solution is found
- Complete in finite spaces
- Space complexity: $O(b^q)$
- Time complexity: O(bq)

Search for the optimal solution

- Now we assume to be interested in the solution with minimum cost (not just any path to the goal, but the cheapest possible)
- To devise an optimal search algorithm we take the moves from BFS. Why it seems reasonable to do that?
- We generalize the idea of BFS to that of Uniform Cost Search (UCS)
- BFS proceeds by depth levels, UCS does that by cost levels (as a consequence, if costs are all equal to some constant BFS and UCS coincide)
- Cost accumulated on a path from the start node to v: g(v) (we should include a dependency on the path, but it will always be clear from the context)
- For now let's remove the enqueued list and the goal checking as we know it

0 A

- Have we found the optimal path to the goal? In this problem instance, we can answer yes by inspecting the graph
- How about larger instances? Can we prove optimality?
- Actually, we can prove a stronger claim: every time UCS selects for the first time a node for expansion, the associated path leading to that node has minimum cost

Optimality of UCS

Hypotheses:

- 1. UCS selects from the frontier a node V that has been generated through a path p
- p is not the optimal path to V

Given 2 and the frontier separation property, we know that there must exist a node X on the frontier, generated through a path p'_1 that is on the optimal path $p'\neq p$ to V; let assume $p'=p'_1+p'_2$

$$c(p')=c(p'_1)+c(p'_2)< c(p)$$
 since, from Hp, p' is optimal $c(p'_1)< c(p'_1)+c(p'_2)< c(p)$ since costs are positive $c(p'_1)< c(p)$ X would have been chosen before V, then 1 is false

Optimality of UCS

If when we select for the first time we discover the optimal path, there is no reason to select the same node a second time: **extended list**

Every time we select a node for extension:

- If the node is already in the extended list we discard it
- Otherwise we extend it and we put it the extended list
- (Warning: we are not using an enqueued list, it would actually make the search not sound!)

0 A

• Thanks to the extended list we can prune two branches

Implementation

The goal check is done when the node is selected (not when is generated)

Question: is this search informed?

Summing up

b branching factor, q depth of the shallowest solution, m maximum depth of search tree, l depth limit

Criterion	BFS	UCS	DFS	Limited DFS	Iterative DFS
Complete?	Yes (if b finite)	Yes (if b finite and cost positive)	No (only for finite spaces)	No $(l>q)$	Yes (if <i>b</i> finite)
Time com.	$O(b^q)$	$O(b^{1+\lfloor C^*/\epsilon \rfloor})$	$O(b^m)$	$O(b^l)$	$O(b^q)$
Space com.	$O(b^q)$	$O(b^{1+\lfloor C^*/\epsilon \rfloor})$	O(bm)	O(bl)	O(bq)
Optimal?	Yes (identical costs)	Yes	No	No	Yes (identical costs)

Informed vs non-informed search

- Besides its own rules, any search algorithm decides where to search next by leveraging some knowledge
- Non-informed search uses only knowledge specified at problem-definition time (e.g., goal and start nodes, edge costs), just like we saw in the previous examples
- An informed search might go beyond such knowledge
- Idea: using an estimate of how far a given node is from the goal
- Such an estimate is often called a heuristic

Estimate of the cost of the optimal path from node v to the goal: h(v)

Informed vs non-informed search

- We can enrich DFS and BFS to obtain their an informed versions.
- Both search methods break ties in lexicographical order, but it seems reasonable to do
 that in favor of nodes that are believed to be closer to the goal
- Hill climbing
 - A DFS where ties are broken in favor the node with smallest h
- Beam (of width w)
 - A BFS where at each level we keep the first w nodes in increasing order of h

- The informed version of UCS is called A*
- Very popular search algorithm
- It was born in the early days of mobile robotics when, in 1968, Nilsson, Hart, and Raphael had to face a practical problem with Shakey (one of the ancestors of today's mobile robots)

 The idea behind A* is simple: perform a UCS, but instead of considering accumulated costs consider the following:

 To guarantee that the search is sound and complete we need to require that the heuristic is admissible: it is an optimistic estimate or, more formally:

 $h(n) \leq$ Cost of the minimum path from n to the goal

 If the heuristic is not admissible we might discard a path that could actually turn out to be better that the best candidate found so far

$\mod v$	h(v)
\overline{A}	10
В	7
\mathbf{C}	1
D	3
${f E}$	0
${ m F}$	7
G	2

A 0+10=10

$\mod v$	h(v)
A	10
В	7
\mathbf{C}	1
D	3
${f E}$	0
\mathbf{F}	7
G	2

node v	h(v)
A	10
В	7
\mathbf{C}	1
D	3
${f E}$	0
\mathbf{F}	7
G	2

	A 0+10=10	
B 5+7=		F 6+7=13
C 5+7+1=13	D 5+3+3=11	

$\underline{ \text{node } v}$	h(v)
A	10
В	7
\mathbf{C}	1
D	3
${ m E}$	0
${ m F}$	7
G	2

$\mod v$	h(v)
A	10
В	7
\mathbf{C}	1
D	3
${f E}$	0
\mathbf{F}	7
G	2

$\mod v$	h(v)
A	10
В	7
\mathbf{C}	1
D	3
${f E}$	0
${ m F}$	7
G	2

$\mod v$	h(v)
A	10
В	7
\mathbf{C}	1
D	3
${ m E}$	0
${ m F}$	7
G	2

$_ \text{node } v$	h(v)
A	10
В	7
\mathbf{C}	1
D	3
${ m E}$	0
\mathbf{F}	7
G	2

$\mathrm{node}\ v$	h(v)
\overline{A}	10
В	7
\mathbf{C}	1
D	3
${ m E}$	0
\mathbf{F}	7
G	2

$\mathrm{node}\ v$	h(v)
A	10
В	7
\mathbf{C}	1
D	3
${ m E}$	0
\mathbf{F}	7
G	2

- Problem: if we work with an extended list, admissibility is not enough!
- Let's consider this "pathological" instance:

$\mod v$	h(v)
A	10
В	0
\mathbf{C}	1
D	0
${f E}$	0
\mathbf{F}	100
G	0

- Problem: if we work with an extended list, admissibility is not enough!
- Let's consider this "pathological" instance:

$\mod v$	h(v)
A	10
В	0
\mathbf{C}	1
D	0
${f E}$	0
${ m F}$	100
\mathbf{G}	0

A 0+10=10

- Problem: if we work with an extended list, admissibility is not enough!
- Let's consider this "pathological" instance:

	A
0+:	10=10
	$\overline{}$
В	F
5+0=5	6+100=106

$\mod v$	h(v)
A	10
В	0
\mathbf{C}	1
D	0
${f E}$	0
${ m F}$	100
\mathbf{G}	0

- Problem: if we work with an extended list, admissibility is not enough!
- Let's consider this "pathological" instance:

	A 0+10=10	
B		F
5+0	=5	6+100=106
С	D	
5+7+1=13	5+3+0=8	

$\mod v$	h(v)
A	10
В	0
\mathbf{C}	1
D	0
${f E}$	0
${ m F}$	100
\mathbf{G}	0

- Problem: if we work with an extended list, admissibility is not enough!
- Let's consider this "pathological" instance:

$\mathrm{node}\ v$	h(v)
A	10
В	0
\mathbf{C}	1
D	0
${f E}$	0
\mathbf{F}	100
G	0

- Problem: if we work with an extended list, admissibility is not enough!
- Let's consider this "pathological" instance:

node v	h(v)
A	10
В	0
\mathbf{C}	1
D	0
${f E}$	0
\mathbf{F}	100
G	0

- Problem: if we work with an extended list, admissibility is not enough!
- Let's consider this "pathological" instance:

$\mathrm{node}\ v$	h(v)
A	10
В	0
\mathbf{C}	1
D	0
${f E}$	0
\mathbf{F}	100
G	0

- Problem: if we work with an extended list, admissibility is not enough!
- Let's consider this "pathological" instance:

node v	h(v)
A	10
В	0
\mathbf{C}	1
D	0
\mathbf{E}	0
\mathbf{F}	100
G	0

- Problem: if we work with an extended list, admissibility is not enough!
- Let's consider this "pathological" instance:

$\mod v$	h(v)
A	10
В	0
\mathbf{C}	1
D	0
${f E}$	0
${ m F}$	100
G	0

- Problem: if we work with an extended list, admissibility is not enough!
- Let's consider this "pathological" instance:

node v	h(v)
A	10
В	0
\mathbf{C}	1
D	0
\mathbf{E}	0
\mathbf{F}	100
G	0

- Problem: if we work with an extended list, admissibility is not enough!
- Let's consider this "pathological" instance:

node v	h(v)
A	10
В	0
\mathbf{C}	1
D	0
\mathbf{E}	0
\mathbf{F}	100
G	0

- Problem: if we work with an extended list, admissibility is not enough!
- Let's consider this "pathological" instance:

$\mathrm{node}\ v$	h(v)
A	10
В	0
\mathbf{C}	1
D	0
${f E}$	0
\mathbf{F}	100
G	0

- We need to require a stronger property: consistency
- For any connected nodes u and v: $h(v) \le c(v, u) + h(u)$

It's a sort of triangle inequality, let's reconsider our pathological instance:

Optimality of A*

$$f(v) = g(v) + h(v)$$

$$f(u) = g(u) + h(u) = g(v) + c(v, u) + h(u) \ge g(v) + h(v)$$

consistency

$$f(u) \ge f(v)$$
 \longrightarrow f is non-decreasing along any search trajectory

Hypotheses:

- 1. A* selects from the frontier a node G that has been generated through a path p
- 2. p is not the optimal path to G

Given 2 and the frontier separation property, we know that there must exist a node X on the frontier that is on a better path to G

f is non-decreasing: $f(G) \ge f(X)$

A* selected G: f(G) < f(X)

When A* selects a node for expansion, it discovers the optimal path to that node

Building good heuristics

- The "larger heuristics are better" principle is not a methodology to define a good heuristic
- Such a task, seems to be rather complex: heuristics deeply leverage the inner structure of a problem and have to satisfy a number of constraints (admissibility, consistency, efficiency) whose guarantee is not straightforward
- When we adopted the straight-line distance in our route finding examples, we were sure it was a good heuristic
- Would it be possible to generalize what we did with the straight-line distance to define a method to *compute* heuristics for a problem?
- Good news: the answer is yes

Evaluating heuristics

How to evaluate if an heuristic is good?

- A* will expand all nodes v such that: $f(v) < g^*(goal) \longrightarrow h(v) < g^*(goal) g(v)$
- If, for any node v $h_1(v) \leq h_2(v)$ then A* with h₂ will not expand more nodes than A* with h₁, in general h₂ is better (provided that is consistent and can be computed by an efficient algorithm)
- If we have two consistent heuristics h_1 and h_2 we can define $h_3(v) = \max\{h_2(v), h_1(v)\}$

Relaxed problems

 Given a problem P, a relaxation of P is an easier version of P where some constraints have been dropped

• In our route finding problems removing the constraint that movements should be over roads (links) means that some costs pass from an infinite value to a finite one (the straight-line distance)

Relaxed problems

• Idea:

Define a relaxation of P:
$$\hat{P}$$
 Apply A* to every node and get $\hat{h}^*(v)$ Set $h(v) = \hat{h}^*(v)$ in the original problem and run A*

- We can easily define a problem relaxation, it's just matter of removing constraints/rewriting costs
- But what happens to soundness and completeness of A*?

$$\hat{h}^*(v) \leq \hat{g}(v,u) + \hat{h}^*(u)$$
 Path costs are optimal

$$h(v) \le \hat{g}(v,u) + h(u)$$
 From our idea

$$\hat{g}(v,u) \leq g(v,u)$$
 From the definition of relaxation

$$h(v) \le g(v, u) + h(u)$$
 h is consistent

References

- Russel S., Norvig P., Artificial Intelligence, a Modern Approach, III ED
- LaValle, SM., Planning Algorithms http://lavalle.pl/planning/
- https://qiao.github.io/PathFinding.js/visual/
- https://www.redblobgames.com/pathfinding/astar/introduction.html

Sistemi Intelligenti Avanzati Corso di Laurea in Informatica, A.A. 2021-2022 Università degli Studi di Milan

Matteo Luperto

Dipartimento di Informatica matteo.luperto@unimi.it